Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon.

نویسندگان

  • Junjie Lin
  • Biao Zhu
  • Weixin Cheng
چکیده

The response of soil organic carbon (SOC) pools to globally rising surface temperature crucially determines the feedback between climate change and the global carbon cycle. However, there is a lack of studies investigating the temperature sensitivity of decomposition for decadally cycling SOC which is the main component of total soil carbon stock and the most relevant to global change. We tackled this issue using two decadally (13) C-labeled soils and a much improved measuring system in a long-term incubation experiment. Results indicated that the temperature sensitivity of decomposition for decadally cycling SOC (>23 years in one soil and >55 years in the other soil) was significantly greater than that for faster-cycling SOC (<23 or 55 years) or for the entire SOC stock. Moreover, decadally cycling SOC contributed substantially (35-59%) to the total CO2 loss during the 360-day incubation. Overall, these results indicate that the decomposition of decadally cycling SOC is highly sensitive to temperature change, which will likely make this large SOC stock vulnerable to loss by global warming in the 21st century and beyond.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light and Heavy Fractions of Soil Organic Matter in Response to Climate Warming and Increased Precipitation in a Temperate Steppe

Soil is one of the most important carbon (C) and nitrogen (N) pools and plays a crucial role in ecosystem C and N cycling. Climate change profoundly affects soil C and N storage via changing C and N inputs and outputs. However, the influences of climate warming and changing precipitation regime on labile and recalcitrant fractions of soil organic C and N remain unclear. Here, we investigated so...

متن کامل

Up Against The Wall: The Effects of Climate Warming on Soil Microbial Diversity and The Potential for Feedbacks to The Carbon Cycle

Earth’s climate is warming, and there is evidence that increased temperature alters soil C cycling, which may result in a self-reinforcing (positive), microbial mediated feedback to the climate system. Though soil microbes are major drivers of soil C cycling, we lack an understanding of how temperature affects SOM decomposition. Numerous studies have explored, to differing degrees, the extent t...

متن کامل

Contrasting soil microbial community functional structures in two major landscapes of the Tibetan alpine meadow

The grassland and shrubland are two major landscapes of the Tibetan alpine meadow, a region very sensitive to the impact of global warming and anthropogenic perturbation. Herein, we report a study showing that a majority of differences in soil microbial community functional structures, measured by a functional gene array named GeoChip 4.0, in two adjacent shrubland and grassland areas, were exp...

متن کامل

Long-term fertilization of a boreal Norway spruce forest increases the temperature sensitivity of soil organic carbon mineralization

Boreal ecosystems store one-third of global soil organic carbon (SOC) and are particularly sensitive to climate warming and higher nutrient inputs. Thus, a better description of how forest managements such as nutrient fertilization impact soil carbon (C) and its temperature sensitivity is needed to better predict feedbacks between C cycling and climate. The temperature sensitivity of in situ so...

متن کامل

Litter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils

Interaction effect of temperature and litter input on SOM decomposition is poor understood, restricting accurate prediction of the dynamics and stocks of soil organic carbon under global warming. To address this knowledge gap, we conducted an incubation experiment by adding (13)C labeled leaf-litter into a coniferous forest (CF) soil and a broadleaved forest (BF) soil. In this experiment, respo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Global change biology

دوره 21 12  شماره 

صفحات  -

تاریخ انتشار 2015